Al describir grupos de observaciones, con frecuencia es conveniente resumir la información con un solo número. Este número que, para tal fin, suele situarse hacia el centro de la distribución de datos se denomina medida o parámetro de tendencia central o de centralización. Cuando se hace referencia únicamente a la posición de estos parámetros dentro de la distribución, independientemente de que ésta esté más o menos centrada, se habla de estas medidas como medidas de posición. En este caso se incluyen también los cuantiles entre estas medidas.
Entre las medidas de tendencia central tenemos:
- Media.
- Media ponderada.
- Media geométrica.
- Mediana.
- Moda.
Se debe tener en cuenta que existen variables cualitativas y variables cuantitativas, por lo que las medidas de posición o medidas de tendencia se usan de acuerdo al tipo de variable que se está observando, en este caso se observan variables cuantitativas.
MEDIA:
La media aritmética (también llamada promedio o simplemente media) de un conjunto finito de números es el valor característico de una serie de datos cuantitativos objeto de estudio que parte del principio de la esperanza matemática o valor esperado, se obtiene a partir de la suma de todos sus valores dividida entre el número de sumandos. Cuando el conjunto es una muestra aleatoria recibe el nombre de media muestral siendo uno de los principales estadísticos muestrales.
MEDIA PONDERADA:
Es una medida de tendencia central, que es apropiada cuando en un conjunto de datos cada uno de ellos tiene una importancia relativa (o peso) respecto de los demás datos. Se obtiene del cociente entre la suma de los productos de cada dato por su peso o ponderación y la suma de los pesos.
MEDIA GEOMÉTRICA:
La media geométrica de una cantidad arbitraria de números (por decir n números) es la raíz n-ésima del producto de todos los números, es recomendada para datos de progresión geométrica, para promediar razones, interés compuesto y números índices.
MEDIANA:
La mediana representa el valor de la variable de posición central en un conjunto de datos ordenados.
MODA:
No hay comentarios:
Publicar un comentario